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ABSTRACT
In domain adaptive segmentation, domain shift may cause erro-
neous high-confidence predictions on the target domain, resulting
in poor self-training. To alleviate the potential error, most previous
works mainly consider aleatoric uncertainty arising from the inherit
data noise. This may however lead to overconfidence in incorrect
predictions and thus limit the performance. In this paper, we take
advantage of Deterministic Uncertainty Methods (DUM) to explore
the epistemic uncertainty, which reflects accurately the domain gap
depending on the model choice and parameter fitting trained on
source domain. The epistemic uncertainty on target domain is eval-
uated on-the-fly to facilitate online reweighting and correction in
the self-training process. Meanwhile, to tackle the class-wise quan-
tity and learning difficulty imbalance problem, we introduce a novel
data resampling strategy to promote simultaneous convergence
across different categories. This strategy prevents the class-level
over-fitting in source domain and further boosts the adaptation
performance by better quantifying the uncertainty in target do-
main. We illustrate the superiority of our method compared with
the state-of-the-art methods.
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1 INTRODUCTION
Despite the great success in enhancing semantic segmentation,
deep-learning-based methods[4, 34] may not work well under the
domain shift problem. To tackle this issue, unsupervised domain
adaption (UDA)[14, 38] is proposed to transfer the knowledge
from the labeled source domain to the unlabeled target images.
As predominant solutions in the literature, distance-based metric
learning[25, 41] and adversarial learning[14, 38, 43, 47] are usu-
ally engaged to align the distribution between source and target
domains on image-level or/and feature-level, which implicitly mea-
sure the distribution shift. Albeit the usefulness, they either in-
troduce extra artificially designed metrics or require a sizeable
computational cost, falling short of delivering a widely adopted
practical solution in real-world scenarios. An alternative would
be self-training[11, 21, 28, 37, 40, 45, 48], which gradually learns
the adaptation in the self-paced learning curriculum by iteratively
generating pseudo label on the target domain. Without introducing
any extra complex computational pipeline, self-training methods
become more popular thanks to their simplicity, stability, and effi-
ciency.

However, most previous attempts fail to consider the reliabil-
ity/uncertainty of the generated pseudo labels. For instance, the
pretrained network may produce pseudo labels with overconfi-
dence in large wrongly-predicted regions, which could result from
the softmax output. Unfortunately, one may not address such an
issue by simply setting a probability threshold such as maximum
class probability (MCP). In another word, methods based on the
prediction probability fail to reflect the real reliability/uncertainty
of the model in essence [13]. Instead, it may just make the network
more confident about existing false predictions by self-training. As
explained in Figure 2, in previous self-training paradigm, source-
similar target samples have a higher possibility of getting correct
pseudo labels. For the source-dissimilar ones, although they may
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Figure 1: Illustration of aleatoric [13] v.s. epistemic uncer-
tainty (our method) on target images in the early stage of
training.
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Figure 2: In UDA setting, rather than trusting awell-classified
pseudo label, a source-similar pseudo label is much more
reliable.

be well-classified with high confidence, the obtained results are
entirely wrong and further misguide the model. To this end, how to
estimate the real uncertainty in domain adaptation presents a chal-
lenging yet crucial problem, which is critically important, especially
in practical scenarios like autonomous driving.

Uncertainty in a model’s predictions can arise from two differ-
ent sources: aleatoric and epistemic uncertainty [8, 19]. Aleatoric
uncertainty encompasses the noise inherent in data, which is con-
sequently irreducible. Epistemic uncertainty, however, quantifies
the uncertainty originating from the model choice and parameter
fitting and can be reducible with the increase of the training data.
For instance, MCP is more likely to be associated with aleatoric un-
certainty [13], focusing more on fitting the data bias. In most cases,
it could merely generate limited improvement through self-training.
In comparison, epistemic uncertainty can reflect the confidence of
the model with regard to the newly introduced distribution. If the
epistemic uncertainty is incorporated into the domain adaptation

Road Building Sign RiderCommon Classes: Rare Classes:

(a) Without ECS (b) With ECS

Figure 3: Source class-wise entropy v.s. target IoU for each
class (a) without and (b) with ECS. Different classes show a
similar trend in entropy decreasing with ECS, and the adap-
tation performance is further boosted in both common and
rare classes.

process, it can explicitly embody the distributional gap and allevi-
ate the cumulative error of the pseudo labels in self-training from
another perspective. As shown in Figure 1, compared with aleatoric
uncertainty which commonly exists in the edges of different classes,
epistemic uncertainty provides richer information of confidence
and overlaps more with the erroneous labels.

In addition, although the pseudo labels may be rectified through
epistemic uncertainty estimation during training, this process still
depends highly on the model’s episteme on each class. As observed
in Figure 3, the entropy of common classes (Road & Building) de-
creases quickly at the beginning and remains unchanged afterwards.
Based on the interpretation of entropy as uncertainty in information
theory [2] and our above definition of uncertainties, we can reason-
ably infer that irreducible entropy components exist due to inherent
noise, which are treated as the aleatoric uncertainty following the
above description. Meanwhile, owing to class-imbalanced sampling
in the training process, the decreasing speed of the reducible en-
tropy (epistemic uncertainty) is not the same for each class. This
results in the epistemic dissonance issue: 1) for common and easy
classes, the model will reach the bound of aleatoric uncertainty
very fast, thus no further gain can be achieved due to the noise
inherent in data; 2) for rare and hard classes, the model cannot
possess enough episteme in the early training stage; the resulting
poor pseudo labels would further deteriorate the self-training.

In this paper, inspired from the recently emerged new line of
uncertainty estimation, termed deterministic uncertainty methods
(DUMs) [9, 32], we introduce predictive epistemic uncertainty es-
timation into the UDA task in a computational efficient manner.
To be specific, we replace the last layer of the segmentation model
with a distinction maximization layer [27] to generate informative
and discriminative representations. Then, an auxiliary uncertainty
head is trained on source domain, enabling the measurement of
source-dissimilar representations. Last, the pixel-wise epistemic
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uncertainty prediction on target domain is engaged to rectify the
self-training process by filtering the high uncertainty areas, signifi-
cantly enhancing the reliability of pseudo labels. Meanwhile, we
introduce a novel training data resampling strategy, Episteme-based
Class Sampling, to prevent degradation in uncertainty estimation,
aiming to solve the epistemic dissonance issue. In particular, the
sampling strategy is updated dynamically based on the moving
average of class entropy and increases the sampling rate of classes
according to the reducible entropy, i.e., epistemic uncertainty. This
strategy is certified to prevent the class-level over-fitting in source
domain and further boosts the adaptation performance by better
quantifying the uncertainty in target domain.

Our contributions can be summarized as follows:
• To the best of our knowledge, we are the first to explore epis-
temic uncertainty in domain adaptive segmentation. Our pro-
posed model can quantify the epistemic uncertainty for im-
proving the reliability of the pseudo labels in the self-training
process.
• We propose a novel data sampling strategy, Episteme-based
Class Sampling, to dynamically balance the model’s episteme
on different classes across the training process, benefiting the
uncertainty estimation and domain adaptation at the same time.
• Experiments show that our approach outperforms existing state-
of-the-art methods by a large margin.

2 RELATEDWORK
2.1 Unsupervised Domain Adaptation
Distribution shift hinders the generalization of a pre-trained model
in real scenarios. UDA aims to transfer the knowledge learned from
the labeled source domain to the target domain in an unsupervised
way. This task has been widely studied in image classification[18,
24], semantic segmentation[14, 38], object detection[5, 42], etc.,
in computer vision. The existing UDA methods can be roughly
summarized into three categories:
Metric Learning. An intuitive solution for domain adaptation is to
adopt a proper metric to measure the variational distance between
two domains and subsequently regularize neural networks to mini-
mize this distance. For example, maximum mean discrepancy[25]
measures between the feature embeddings of the source and target
domains in a RKHS. Furthermore, higher-order statistics and other
well-designed discrepancies are adopted in [3, 30, 41, 46].
Adversarial Learning. Recent research[14, 38, 43, 47] utilized ad-
versarial learning to tackle the domain shift problem from different
aspects, including pixel-level alignment, feature-level alignment,
and the joint learning methods. A discriminator is leveraged in this
setting, where the generative model aims to confuse the discrimi-
nator with the synthesized images or extracted features to obtain
the domain-invariant representations.
Self-Training. Unlike the previous two approaches that focus
on source-target alignment, self-training is more concerned with
the specific information in target domain, aiming to lower the
uncertainty of the pretrained model. In the past, this approach
often takes a two-state pipeline[21, 28, 44, 44], which finetunes
the trained model using the pseudo labels on target images given
by model prediction. Recently, the online self-training[37, 45] has

become popular where pseudo labels are calculated and corrected
during training. Less complex setup and quick update enable online
self-training a more wide range of application scenarios. Moreover,
in [45], pseudo labels obtained online attain high quality within
a few steps, showing a distinct advantage over the conventional
offline setting.

We argue that the key for self-training is to produce high-accuracy
pseudo labels, but prediction errors are inevitable especially when
the domain gap is significant. Specifically, pseudo labels with over-
confidence in large wrongly-predicted regions cannot be detected
through an offline threshold method, making the improvement
limited to edge areas. We tackle this problem by introducing De-
terministic Uncertainty Methods illustrated below. Benefiting from
its capability to quantify epistemic uncertainty, our method can
largely improve the quality of pseudo labels.

2.2 Uncertainty Estimation
Uncertainty estimation tries to assign a level of confidence to a
model’s output. Among approaches that estimate model uncer-
tainty in deep learning, Bayesian models[20, 31] are the predomi-
nant one and can predict both epistemic uncertainty and aleatoric
uncertainty. While exact Bayesian is intractable, a range of approx-
imate methods have been developed and achieved good results in
classification, even though they fail to deliver a practical solution
to other application scenarios such as semantic segmentation. An
alternative would be Monte-Carlo Dropout[10], which is an easy
and simple to implement. Yet, its reliability is not always promising.
Previous attempts also exploit Deep Ensembles[22], which trains
multiple models from different initializations and averages their
predictions as the model output. Though the method is simple and
effective, it comes with a price of high computational cost. Recently,
Deterministic Uncertainty Methods[1, 9, 23, 27, 32, 39] are leading
a trend in quantifying predictive uncertainty. It is specifically de-
signed to quantify epistemic uncertainty from the distribution of
the latent representations in a computationally efficient manner.
This advanced approach has shown superiority in several computer
vision tasks. To the best of our knowledge, we are the first to in-
vestigate the epistemic uncertainty in domain adaptive semantic
segmentation. The idea that epistemic uncertainty should increase
with the distribution shift relates deterministic uncertainty methods
to domain adaptation. Following [9, 27], we leverage a set of train-
able prototypes to learn a discriminant latent space for accuracy
improvement and uncertainty prediction.

3 MAIN METHODOLOGY
3.1 Self-Training Baseline for UDA
We will first give an overview of our baseline self-training UDA
framework. Given the paired source domain images with one-hot
labelsDS = {(𝑥S𝑛 , 𝑦S𝑛 )}𝑁𝑛=1 with𝐶 classes and the unlabeled target
domain images DT = {(𝑥T𝑚 )}𝑀𝑚=1, we aim to train a segmentation
network that achieves promising performance on target domain.
Directly training the network 𝑓 on source data with categorical
cross-entropy (CE) loss cannot guarantee good performance on
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Figure 4: Overview of our self-training UDA framework. We train the uncertainty estimation on source domain upon determin-
istic representation, which is constrained by the Distinction Maximization Layer. Then we utilize the epistemic uncertainty
estimated on target domain images to rectify the self-training process by reweighting the cross entropy loss with pseudo label.
In addition, Episteme-based Class Sampling (ECS) is introduced to balance the episteme on source domain.

target domain due to the domain gap:

LS
𝐶𝐸

= −
𝐻×𝑊∑︁
𝑖=1

C∑︁
𝑐=1

𝑦S(𝑖,𝑐 ) log(𝑓 (𝑥
S) (𝑖,𝑐 ) ). (1)

To tackle the domain gap, one popular self-training (ST) solu-
tion [36] is to utilize a source-trained teacher network 𝑓𝑡𝑒 to gen-
erate target domain pseudo labels 𝑦T by the maximum probable
class:

𝑦T(𝑖,𝑐 ) =
{

1, if 𝑐 = argmax𝑐′ 𝑓𝑡𝑒 (𝑥T ) (𝑖,𝑐′ )
0, otherwise .

The teacher network 𝑓𝑡𝑒 is not updated by gradient backpropaga-
tion but the Exponentially Moving Average (EMA) of the student
network weights 𝜃 𝑓 after each training step 𝑡 :

𝜃𝑡+1
𝑓𝑡𝑒
←𝑚𝜃𝑡

𝑓𝑡𝑒
+ (1 −𝑚)𝜃 𝑓 , (2)

where 𝑚 is the momentum to temporally ensemble the student
network.

In this work, to further stabilize the training process, we fol-
low DACS [37] to generate pseudo labels on non-augmented im-
ages, and train the student network with domain-mixed images. In
each iteration, a pair of source and target images with the corre-
sponding ground truth and pseudo labels are sampled, denoted as
(𝑥S𝑛 , 𝑦S𝑛 , 𝑥

T
𝑚 , 𝑦T𝑚 ). Next, a subset of classes [29] is randomly selected

from 𝑦S𝑛 to form the binary mask𝑀 ∈ {0, 1}𝐻×𝑊 , where the pixel
is 1 if belonging to the subset otherwise 0. The mixed images with
their labels are defined as:{

𝑥𝑚𝑖𝑥 = 𝑥S𝑛 ⊙ 𝑀 + 𝑥T𝑚 ⊙ (1 −𝑀)
𝑦𝑚𝑖𝑥 = 𝑦S𝑛 ⊙ 𝑀 + 𝑦T𝑚 ⊙ (1 −𝑀)

,

where ⊙ denotes the Hadamard product. The student model is then
trained with mixed image and its label with weighted cross-entropy
(WCE) loss:

LT
𝑊𝐶𝐸

= −
𝐻×𝑊∑︁
𝑖=1

C∑︁
𝑐=1

𝑤𝑚𝑖𝑥
𝑖 𝑦𝑚𝑖𝑥

(𝑖,𝑐 ) log(𝑓 (𝑥
𝑚𝑖𝑥 ) (𝑖,𝑐 ) ). (3)

Here,𝑤𝑚𝑖𝑥 = 1⊙𝑀+𝑤T⊙(1−𝑀) is the weight map to alleviate the
impact of potential erroneous pseudo labels, where 1 ∈ R𝐻×𝑊 is an
all-one map for source domain. Typically, the weight map of target
domain 𝑤T is generated by a pre-defined confidence threshold
upon the maximum class probability [15, 37, 40], which inevitably
degrades the model performance due to the over-confidence nature
of CNN. Different from previous works, we introduce epistemic
uncertainty estimation to generate more precise reweighting map
(described in Section 3.2), significantly boosting the performance
of the self-training process.

3.2 Epistemic Uncertainty Estimation
To cope with the epistemic uncertainty quantification, we introduce
a distinction maximization (DM) layer [27] that has been recently
considered as a replacement of the classification layer (last layer)
for uncertainty estimation [9]. To be specific, in a DM layer, the
units of the classification layer are seen as class-level representa-
tive prototypes and the classification prediction is computed by
calculating the similarity between the input representations and
the prototypes. This DM layer ensures that similar representations
are projected to be close to each other while the dissimilar ones
are away. Moreover, it enables the prototypes to be sensitive to
source-dissimilar representations. Formally, we denote 𝑓𝑒 to be the
feature extractor before DM layer, and 𝑧 = 𝑓𝑒 (𝑥) is the input of the
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DM layer. Given a set of trainable vectors P = {𝑝 𝑗 }
𝑛𝑝
𝑗=1 as learnable

prototypes, the DM layer is defined as follows:

𝐷𝑀 (𝑧) = [𝑆𝑐 (𝑧, 𝑝1), 𝑆𝑐 (𝑧, 𝑝2), ..., 𝑆𝑐 (𝑧, 𝑝𝑛𝑝 )], (4)

where 𝑆𝑐 (·, ·) is the cosine similarity, and 𝑛𝑝 is the number of
the prototypes. An exponential activation function is followed to
sharpen the similarity values, thus facilitating the data embedding
alignment to the corresponding prototypes in the latent space. Fi-
nally, the segmentation prediction and the uncertainty estimation
can be obtained through the segmentation head 𝑓𝑠𝑒𝑔 and the uncer-
tainty estimation head 𝑓𝑢𝑛𝑐 respectively:

𝑦 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑓𝑠𝑒𝑔 ◦ exp(−𝑧𝑠𝑐 ))
𝑢 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑓𝑢𝑛𝑐 ◦ exp(−𝑧𝑠𝑐 ))

, (5)

where 𝑧𝑠𝑐 = 𝐷𝑀 (𝑓𝑒 (𝑥)) is the output of DM layer, exp is the acti-
vation function, the symbol ◦ denotes function composition.
Uncertainty Estimation Training Loss. To optimize the un-
certainty estimation head, three losses are leveraged, including
prototype dissimilar loss L𝐷𝑖𝑠 , entropy maximization loss L𝐸𝑀 ,
and the uncertainty loss L𝑈𝑛𝑐 . These losses are optimized with
source images to encourage an unbiased uncertainty estimation
on the target domain. Among them, the prototype dissimilar loss
constrains the prototypes to be dissimilar and orthogonal:

L𝐷𝑖𝑠 = −
∑︁
𝑗<𝑘

| |𝑝 𝑗 − 𝑝𝑘 | |. (6)

Meanwhile, following the entropy maximization trick described
in [27], entropymaximization loss enables the input representations
of the DM layer to stay close to different prototypes, thus enabling
a discriminative latent space. In practice, we utilize an entropy-like
loss:

L𝐸𝑀 =

𝐻×𝑊∑︁
𝑖=1

𝑧′𝑖 · log(𝑧
′
𝑖 ), 𝑧′ = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑧𝑠𝑐 ). (7)

To associate the prototype to the uncertainty prediction, 𝑓𝑢𝑛𝑐 is
trained to predict the error of 𝑓𝑠𝑒𝑔 , i.e., the value of the CE loss. The
error is min-max normalized into the range of [0, 1], and binary
cross entropy (BCE) is empirically selected for better optimization.
The uncertainty loss is shown as below:

L𝑈𝑛𝑐 = 𝐵𝐶𝐸 (𝑢S, 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (LS
𝐶𝐸
)), (8)

where 𝑢𝑆 is the predicted uncertainty on source domain.
Uncertainty-aware Self-training Rectification. With the un-
certainty estimation head 𝑓𝑢𝑛𝑐 , we are able to predict the epistemic
uncertainty on target images to rectify the self-training process.
Given the target image 𝑥T𝑚 , the reweighting map𝑤T is calculated
by:

𝑤T = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 ((𝑓𝑢𝑛𝑐 ◦ exp(−𝑧T𝑠𝑐 ))/𝑇 ), (9)

where𝑇 is the temperature to control the sensitivity of uncertainty
estimation in target domain reweighting.
Overall Objective. In summary, both source images and mixed
images are used to train the segmentation network. Moreover, we
additionally optimize the uncertainty estimation in the source do-
main and use the predicted uncertainty on the target domain to
rectify the self-training process by assigning less weight to high un-
certainty areas. The overall objective of our method can be written

as:
L = LS

𝐶𝐸
+ LT

𝑊𝐶𝐸
+ 𝜆(L𝐷𝑖𝑠 + L𝐸𝑀 + L𝑈𝑛𝑐 ). (10)

where 𝜆 is a hyperparameter to balance the segmentation and un-
certainty estimation.

3.3 Episteme-based Class Sampling
We propose Episteme-based Class Sampling (ECS), which sam-
ples images based on the class-specific epistemic uncertainty from
source domain. Since we update the sampling probability online,
we utilize the exponentially moving average to get a stable mea-
surement of overall uncertainty 𝑈 𝑡

𝑐 , w.r.t. entropy, for each class:

𝑈 𝑡
𝑐 =

{
𝛼𝑈 𝑡−1

𝑐 + (1 − 𝛼)𝐴𝐸𝑡𝑐 , if 𝐴𝐸𝑡𝑐 exists
𝑈 𝑡−1
𝑐 , otherwise ,

where 𝐴𝐸𝑡𝑐 = 1
𝑁𝑐

∑𝑁𝑐

𝑖=1 −𝑦𝑖 log(𝑦𝑖 ) denotes the batch average en-
tropy for class 𝑐 at step 𝑡 , 𝑁𝑐 is the number of pixels for class 𝑐 , 𝛼
is the update momentum.

To measure the irreducible entropy Ψ𝑐 , i.e. aleatoric uncertainty,
given the model and source data, we train the model without any
adaptation until the entropy no longer decreases. Then, the epis-
temic uncertainty Φ𝑡𝑐 is calculated by subtracting the irreducible
entropy, i.e., Φ𝑡𝑐 = 𝑈 𝑡

𝑐 − Ψ𝑐 . The sampling probability 𝑃 (𝑐) of a
certain class 𝑐 at step 𝑡 is defined as a function of its epistemic
uncertainty:

𝑃 (𝑐) = Φ𝑡𝑐 + 𝜖∑C
𝑐′=1 (Φ

𝑡
𝑐′ + 𝜖)

, (11)

where 𝜖 is set to 0.05 by default to avoid too small number. As a
result, classes with higher epistemic uncertainty will have a higher
probability of being sampled. In each training iteration, a class is
randomly sampled from the probability distribution, and an image
is then selected from the subset of data containing that class. Our
whole framework is illustrated in Figure 4 for better understanding.

4 EXPERIMENTS
4.1 Datasets and Implementation Details
Datasets.We evaluate our method on a popular scenario, which
transfers the information from a synthesis domain to a real one. For
synthesis domains, we use either GTA5 dataset [33], which contains
24,966 images with resolution of 1914 × 1052, or the SYNTHIA
dataset [35], which consists of 9,400 images with resolution of
1280 × 720. For real domain, Cityscapes street scene dataset [6] is
used which contains 2,975 training and 500 validation images with
resolution of 2024 × 1024. Following previous works, we resize the
images to 1024 × 512 pixels for Cityscapes and to 1280 × 720 for
GTA5.
Implementation Details. To be consistent with other comparison
methods, we use theDeeplabv2 [4] frameworkwith a ResNet101 [12]
backbone as our image encoder. The DM layer is added after ASPP
layers, while the segmentation and uncertainty estimation heads
are Linear layers. The output map is up-sampled and operated by a
softmax layer to match the size of the inputs. The pre-trained model
on ImageNet [7] is applied to initialize the backbone. AdamW [26]
is used as the optimizer with a learning rate of 6 × 10−5 for the
backbone and 10× larger for the rest. For the optimizer, betas are
set to {0.9, 0.999}, and weight decay is set to 0.01. Warmup [15]
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Table 1: Comparison results of GTA5→ Cityscapes adaptation in terms of mIoU(%). All methods are based on DeepLabv2 with
ResNet-101 for a fair comparison.

GTA5→ Cityscapes

Method Road SW. Build Wall Fence Pole Light Sign Veg. Terrain Sky Person Rider Car Truck Bus Train Motor. Bike mIoU
SourceOnly 27.0 20.6 53.9 20.8 19.4 35.3 40.7 23.0 84.6 30.1 73.5 63.9 31.4 65.7 10.5 26.3 2.1 34.1 21.8 36.0
AdaptSegNetCVPR’18 [38] 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4
FDACVPR’20 [43] 92.5 53.3 82.4 26.5 27.6 36.4 40.6 38.9 82.3 39.8 78.0 62.6 34.4 84.9 34.1 53.1 16.9 27.7 46.4 50.4
SegUncerCVPR’21 [48] 90.4 31.2 85.1 36.9 25.6 37.5 48.8 48.5 85.3 34.8 81.1 64.4 36.8 86.3 34.9 52.2 1.7 29.0 44.6 50.3
MetaCorrectCVPR’21 [11] 92.8 58.1 86.2 39.7 33.1 36.3 42.0 38.6 85.5 37.8 87.6 62.8 31.7 84.8 35.7 50.3 2.0 36.8 48.0 52.1
DACSWACV’21 [37] 89.9 39.7 87.9 30.7 39.5 38.5 46.4 52.8 88.0 44.0 88.8 67.2 35.8 84.5 45.7 50.2 0.0 27.3 34.0 52.2
IASTECCV’20 [28] 94.1 58.8 85.4 39.7 29.2 25.1 43.1 34.2 84.8 34.6 88.7 62.7 30.3 87.6 42.3 50.3 24.7 35.2 40.2 52.2
ProCAECCV’22 [17] 91.9 48.4 87.4 41.5 31.8 41.9 47.9 36.7 86.5 42.3 84.7 68.4 43.1 88.1 39.6 48.8 40.6 43.6 56.9 56.3
CorDAICCV’21 [40] 94.7 63.1 87.6 30.7 40.6 40.2 47.8 51.6 87.6 47.0 89.7 66.7 35.9 90.2 48.9 57.5 0.0 39.8 56.0 56.6
ProDACVPR’21 [45] 87.8 56.0 79.7 46.3 44.8 45.6 53.5 53.5 88.6 45.2 82.1 70.7 39.2 88.8 45.5 59.4 1.0 48.9 56.4 57.5
DecoupleNetECCV’22 [21] 87.6 49.3 87.2 42.5 41.6 46.6 57.4 44.0 89.0 43.9 90.6 73.0 43.8 88.1 32.9 53.7 44.3 49.8 57.2 59.1
DAPCVPR’22 [16] 94.5 63.1 89.1 29.8 47.5 50.4 56.7 58.7 89.5 50.2 87.0 73.6 38.6 91.3 50.2 52.9 0.0 50.2 63.5 59.8
Ours 96.2 73.4 88.7 41.1 34.1 46.9 57.8 56.0 89.2 49.6 89.5 75.2 49.6 90.5 52.7 54.8 1.0 54.5 62.7 61.2

Table 2: Comparison results of SYNTHIA→ Cityscapes adaptation in terms of mIoU(%). All methods are based on DeepLabv2
with ResNet-101 for a fair comparison. mIOU* denotes the average of 13 classes (computed without the classes marked with *).

SYNTHIA→ Cityscapes

Method Road SW Build Wall* Fence* Pole* Light Sign Veg. Sky Person Rider Car Bus Motor Bike mIoU mIoU*
SourceOnly 59.9 24.7 57.7 6.3 0.0 32.5 29.7 15.0 72.8 70.8 59.2 17.7 73.0 23.0 11.6 22.6 36.0 41.4
AdaptSegNetCVPR’18 [38] 84.3 42.7 77.5 - - - 4.7 7.0 77.9 82.5 54.3 21.0 72.3 32.2 18.9 32.3 - 46.7
FDACVPR’20 [43] 79.3 35.0 73.2 - - - 19.9 24.0 61.7 82.6 61.4 31.1 83.9 40.8 38.4 51.1 - 52.5
SegUncerCVPR’21 [48] 87.6 41.9 83.1 14.7 1.7 36.2 31.3 19.9 81.6 80.6 63.0 21.8 86.2 40.7 23.6 53.1 47.9 55.0
MetaCorrectCVPR’21 [11] 92.6 52.7 81.3 8.9 2.4 28.1 13.0 7.3 83.5 85.0 60.1 19.7 84.8 37.2 21.5 43.9 45.1 52.5
DACSWACV’21 [37] 80.6 25.1 81.9 21.5 2.9 37.2 22.7 24.0 83.7 90.8 67.6 38.3 82.9 38.9 28.5 47.6 48.4 54.8
IASTECCV’20 [28] 81.9 41.5 83.3 17.7 4.6 32.3 31.0 28.8 83.4 85.0 65.6 30.8 86.5 38.2 33.1 52.7 49.8 57.1
ProCAECCV’22 [17] 90.5 52.1 84.6 29.2 3.3 40.3 37.4 27.3 86.4 85.9 69.8 28.7 88.7 53.7 14.8 54.8 53.0 59.6
CorDAICCV’21 [40] 93.3 61.6 85.3 19.6 5.1 37.8 36.6 42.8 84.9 90.4 69.7 47.8 85.6 38.4 32.6 53.9 55.3 63.3
ProDACVPR’21 [45] 87.8 45.7 84.6 37.1 0.6 44.0 54.6 37.0 88.1 84.4 74.2 24.3 88.2 51.1 40.5 45.6 55.5 62.0
DecoupleNetECCV’22 [21] 77.8 48.6 75.6 32.0 1.9 44.4 52.9 38.5 87.8 88.1 71.1 34.3 88.7 58.8 50.2 61.4 57.0 64.1
DAPCVPR’22 [16] 84.2 46.5 82.5 35.1 0.2 46.7 53.6 45.7 89.3 87.5 75.7 34.6 91.7 73.5 49.4 60.5 59.8 64.3
Ours 74.6 34.4 82.7 31.2 1.6 41.5 53.4 57.5 86.2 89.3 75.2 45.2 87.2 49.0 54.2 59.3 57.7 65.2

strategy is taken for the learning rate in the first 1,500 iterations.
We train the model for 40k iterations on a single NVIDIA RTX 4090
GPU with batch size of 2. Following DACS [37], the same data aug-
mentation strategies are utilized, while the teacher momentum𝑚

is set to 0.999. Following the previous works[16, 21, 45], we further
distill the trained model to the simCLR initialized student after the
training.

4.2 Comparisons with State-of-the-art Methods
We comprehensively compare our proposed method with the re-
cent leading approaches. Among them, AdaptSegNet [38], and
FDA [43] employ adversarial learning for domain alignment, while
SegUncer [48], MetaCorrect [11], DACS [37], ProCA [17], and
CorDA [40] deploy self-training frameworks. The rest of them,
including IAST [28], ProDA [45], DecoupleNet [21], and DAP [16]
conduct a mixture of adversarial learning and self-training. We also
provide the non-adapted results, tagged as SourceOnly.

Table 1 illustrates the adaptation results on taskGTA5→Cityscapes.
By exploiting the epistemic uncertainty to rectify the self-training
process, the proposed method achieves the state-of-the-art mIoU
of 61.2%. This yields an improvement of 1.4% compared with the
second best method, DAP [16], and is 9% higher than our baseline
framework DACS [37]. It is worth noting that, although we inherit
the poor performance in class “Train" from DACS, we still outper-
form the previous works by greatly improving other classes, e.g.,
“street wall" and “rider".

The comparison on task SYNTHIA→ Cityscapes is shown in
Table 2. We calculate the mIoU results of 13 categories as well as
16 categories including other three small-scale objectives, i.e., Wall,
Fence and Pole. The proposed method achieves 57.7% mIoU of 16
categories and 65.2% mIoU* of 13 categories, demonstrating the
effectiveness of the proposed uncertain-aware pseudo label rec-
tification. In particular, compared with the self-training method
CorDA [40] that exploits the prior of video to self-supervised depth
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(a) Image (b) Source Only (c) DACS (d) ProDA (e) Ours (f) Ground Truth

Road SW. Build Wall Fence Pole Light Sign Veg. Terrain Sky Person Rider Car Truck Bus Train Motor. Bike Ignored

Figure 5: Qualitative segmentation results on the GTA5→ Cityscapes domain adaptation.

Ground Truth Target Pseudo Label Epistemic Uncertainty Maximum Class Probability

Figure 6: Qualitative results of the discrepancy between the estimated epistemic uncertainty and the maximum class probability.
Red regions indicate high uncertainty. It can be observed that the epistemic uncertainty hasmore overlap between the erroneous
prediction in target pseudo label, while maximum class probability often focuses on the edge of the neighboring area of the
classes.

estimation, our method improves self-training by its inherent un-
certainty without introducing other information. Meanwhile, our
method has a simpler pipeline for data-efficient training in contrast
to ProDA [45], DecoupleNet [21] and DAP [16], which engage a
mixture of self-training and adversarial training.

We present the qualitative segmentation results of our methods
in Figure 5. All UDA methods outperform the “Source Only" base-
line, and our method achieves even better performance than our
UDA baseline DACS [37]. As depicted within the white dashed box
in Figure 5, our method exhibits superior performance in regions
with high uncertainty, such as blurred foreground/background, un-
clear object boundaries, or distant and small objects. We attribute
this to the incorporation of uncertainty estimation, which enhances
the robustness and domain-invariant capabilities of the segmenta-
tion model.

4.3 Analytical Experiments
4.3.1 Ablation Study for Main Components. We conduct ablation
studies on the three main components in our UDA framework

Table 3: Ablation study for each component in the UDA
framework. UE: Uncertainty estimation. USR: Uncertainty-
aware self-training rectifying. ECS: Episteme-based class
sampling.

Methods UE USR ECS mIoU
baseline - - - 52.2 (+ 0.0)
Variant 1 ✓ - - 52.1 (- 0.1)
Variant 2 ✓ ✓ - 54.6 (+ 2.4)
Variant 3 - - ✓ 55.1 (+ 2.9)
Variant 4 ✓ - ✓ 55.0 (+ 2.8)
ours ✓ ✓ ✓ 58.3 (+ 6.1)

ours + simCLR ✓ ✓ ✓ 61.2 (+ 9.0)

to better demonstrate our contribution, i.e., uncertainty estima-
tion (UE), uncertainty-aware self-training rectifying (USR), and
episteme-based class sampling (ECS). Table 3 presents the perfor-
mance of different variants of our framework in the adaptation
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Table 4: Ablation study for the distinction maximization
layer. The default settings are marked with *.

L𝐷𝑖𝑠 L𝐸𝑀 mIoU 𝑛𝑝 mIoU 𝐶𝑝 mIoU
- - 55.7 16 55.82 64 55.82
- ✓ 56.4 32 56.55 128 56.75
✓ - 57.5 64* 58.3 256* 58.3
✓* ✓* 58.3 128 56.7 512 57.6

direction GTA5→ Cityscapes. Comparing Variant 1 with our base-
line, replacing the last layer with DM layer cannot benefit the seg-
mentation results but causes a slight degradation in mIoU (about
0.1%). Variant 2 indicates that utilizing uncertainty to reweight
the self-training process significantly improves the performance
by reducing the negative effect of errors and noise in the pseudo
labels (+2.4% mIoU). As shown in Variant 3, solely employing ECS
can also improve the baseline by a large margin (+2.9% mIoU), sug-
gesting the importance of the balanced episteme of each class on
the source domain. Variant 4 implies that without rectification in
self-training, introducing additional uncertainty estimation will
not do good to the model performance. In spite of that, it will
not harm the model’s performance same as in Variant 1. Taken
together, our method performs the best, showing that the three
components promote mutually and are all indispensable for the
superior domain adaptation results. Finally, following the previous
works [16, 21, 45], self distillation [45] with simCLR initialized back-
bone further boosts the performance of our method in the UDA
scenarios.

4.3.2 Experiments for Distinction Maximization Layer. To show
the necessity of the prototype dissimilar loss L𝐷𝑖𝑠 and entropy
maximization loss L𝐸𝑀 , we ablate the two losses in the left part of
Table 4. Without the constraints of prototypes from L𝐷𝑖𝑠 , a large
performance degradation can be observed (-1.9% mIoU), which
might be caused by inaccurate uncertainty estimation. We conjec-
ture that the dissimilar loss can encourage the prototypes to be
distinguishable, improving the source-dissimilar detection. Mean-
while,L𝐸𝑀 contributes an improvement of 0.8%mIoU by additional
constraining on the latent space of the DM layer. Without the con-
straints of the two losses, nearly no gain can be achieved due to
the noisy pseudo labels.

In addition, we also study the number of the prototypes 𝑛𝑝 and
the channels for each prototype 𝐶𝑝 . As shown in the right part of
Table 4, increasing 𝑛𝑝 or 𝐶𝑝 can enhance the performance of UDA
to a certain degree, but oversize 𝑛𝑝 or 𝐶𝑝 would not benefit the re-
sult. That means too few prototypes and prototype channels would
degrade the model by limiting the capability of feature representa-
tion, while too much of them shall harm the result of uncertainty
estimation as it requires a deterministic representation.

4.3.3 Effectiveness of Uncertainty Estimation. To better illustrate
the intuition of uncertainty estimation, we compare previous la-
bel refinement methods in Table 5. MCP, also known as aleatoric
uncertainty, the most commonly used label refinement method,
generates the mIoU of 52.2. Structural Prior Knowledge [49] is not
suitable for online self-training but for offline self-training, failing
to improve MCP. Prediction Variance Uncertainty [48] is the first

Table 5: Comparison with different pseudo label refinement.

Method w/o ECS w ECS
Maximum Class Probability [13] 52.2 54.6
Structural Prior Knowledge [49] 42.6 44.1
Prediction Variance Uncertainty [48] 51.2 56.2
Epistemic Uncertainty 54.6 58.3

method for actively estimating uncertainty in UDA, with a drop in
performance without ECS (-1.0) and improvement with ECS (+4.0),
suggesting that ECS assists in active uncertainty estimation. Our
method focuses on epistemic uncertainty, utilizing the model’s abil-
ities to achieve the best results, 54.6 and 58.3 without and with ECS,
respectively. Qualitative results compare epistemic uncertainty to
maximum class probability in Figure 6, showing the benefit of using
epistemic uncertainty to enhance self-training and reduce target
pseudo-label errors.

5 CONCLUSIONS
This paper investigates epistemic uncertainty in domain adaptive
semantic segmentation. Our proposed method quantifies the uncer-
tainty during pseudo-label rectification in self-training, reducing
cumulative error and guiding proper adaptation. We also address
imbalanced episteme on each class, proposing an episteme-based
class sampling strategy that dynamically adjusts sampling prob-
ability. Our method is validated with two standard benchmarks,
showing its effectiveness both quantitatively and qualitatively.
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