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Mind The Gap: Alleviating Local Imbalance for
Unsupervised Cross-Modality Medical Image

Segmentation
Zixian Su, Kai Yao, Xi Yang, Qiufeng Wang, Yuyao Yan, Jie Sun and Kaizhu Huang

Abstract— Unsupervised cross-modality medical image
adaptation aims to alleviate the severe domain gap between
different imaging modalities without using the target do-
main label. A key in this campaign relies upon aligning the
distributions of source and target domain. One common
attempt is to enforce the global alignment between two
domains, which, however, ignores the fatal local-imbalance
domain gap problem, i.e., some local features with larger
domain gap are harder to transfer. Recently, some methods
conduct alignment focusing on local regions to improve
the efficiency of model learning. While this operation may
cause a deficiency of critical information from contexts.
To tackle this limitation, we propose a novel strategy to
alleviate the domain gap imbalance considering the char-
acteristics of medical images, namely Global-Local Union
Alignment. Specifically, a feature-disentanglement style-
transfer module first synthesizes the target-like source
images to reduce the global domain gap. Then, a local
feature mask is integrated to reduce the ‘inter-gap’ for
local features by prioritizing those discriminative features
with larger domain gap. This combination of global and
local alignment can precisely localize the crucial regions in
segmentation target while preserving the overall semantic
consistency. We conduct a series of experiments with two
cross-modality adaptation tasks, i,e. cardiac substructure
and abdominal multi-organ segmentation. Experimental re-
sults indicate that our method achieves state-of-the-art
performance in both tasks.

I. INTRODUCTION

THE success of deep learning models is highly dependent
on the assumption that the training and testing data

are i.i.d (independently identically distribution). However, in
clinical practice, domain shift is widespread among different
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Fig. 1. Severe domain gap can be seen in cross-modality cardiac
dataset, as compared with natural images. Except for the style differ-
ence in two modalities, substurctures show diverse morphology. This
phenomenon is more obvious for MYO and LVC, which indicates larger
domain gap in these local regions.

datasets due to the existence of multiple imaging modalities.
Nevertheless, accurate segmentation can only be achieved with
a large amount of labeled data in each modality, which is
tedious and time-consuming. To tackle this problem, Unsu-
pervised Domain Adaptation (UDA) [1]–[4] has been widely
investigated to transfer the knowledge learned from a rich-
labeled source domain to an unlabeled target domain, so as to
train a model to segment the target images without labels.

Although the existing UDA methods have shown impressive
results in cross-modality medical image analysis [5]–[7], most
of them are under the assumption that all features share
consistent domain gap. Though the key component of domain
adaptation for semantic segmentation is quite straightforward
- matching the overall distributions of two different domains,
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merely focusing on the global distribution gap while ignoring
the ‘inter-gap’ of local features appears inappropriate.

For an illustrative example shown in Figure 1 (a), in
cardiac segmentation of Magnetic Resonance Imaging (MRI)
and Computed Tomography (CT) scans [8], the transfer of
knowledge is much easier for Ascending Aorta (AA) as
its appearance is quite similar in both domains - they are
both brighter than their surroundings, and the shape of this
structure is close to each other in two domains. In contrast,
the adaptation for the structure MYOcardium (MYO) of the
left ventricle will be much harder. The segmentation task for
this structure itself is challenging due to the fuzzy boundary,
not to mention the difference in morphology and contrast
between the two domains. In this kind of scenario, if we
only perform basic global alignment without considering the
local gap imbalance, a possible consequence would be the
over-alignment for the transferable features and insufficient
adaptation for the discriminative features, as shown in Fig-
ure 2. Here, the transferable features indicate those with a
relatively small domain gap (cross samples in Figure 2), while
the discriminative features represent the ones with a larger
domain gap (circle samples in Figure 2). A bigger cost would
be the misalignment of local features in order to achieve strict
global alignment, in which the local features ‘inter-gaps’ may
even be enlarged.

In [9], Chen et al. shared the similar view that strictly
aligning the entire feature distributions between domains is
prone to result in negative transfer, since the transferability of
different levels varies greatly. In addition, in [10], Saito et al.
identified an analogous phenomenon for object (instance-level)
and scene layouts (image-level) in the task of object detection.
Therefore, Chen et al. proposed to handle a contradiction be-
tween transferability and discriminability globally and locally,
while [10] chose to leverage strong-local and weak-global
alignment strategy instead.

In a similar spirit, we rethink the alignment strategy for
domain gap problem in medical image data. In this study, our
main goal is to improve the transferability of the segmentation
object. Considering that the characteristics of medical images
are quite different from those natural images [11], [12] - the
segmentation target is relatively small and centralized, while
the background is comparably complex and different (see
Figure 1 (a)(b)), the domain shift problem itself is more severe
and challenging, as it implies that not only the segmentation
target but also the irrelevant background has a large domain
shift. Due to the one-of-a-kind existence of irrelevant and
complex background, the performance of common attempts
on natural datasets would be greatly reduced. In other words,
the key issue is effective alignment in the segmentation target
with local domain gap imbalance. Thus, we argue that global
alignment as well as the local alignment are both essential for
domain adaptation in medical images. Merely global alignment
may hurt the overall performance, potentially impairing the
discriminability in target domain. While local alignment itself
is insufficient to capture discriminative features in the segmen-
tation target, it is likely to act on background area incorrectly
under severe domain shift. Therefore, we first introduce a
style-transfer module to pre-process the data beforehand to

conquer the severe domain shift in the whole picture, as
illustrated in Figure 2. This step proves vital, since it can make
alignment at the domain level to globally alleviate the domain
shift both in background and target, helping the downstream
module prioritize the discriminative features with larger do-
main gap in the segmentation target instead of those in the
whole picture. After that, the local feature masks are adopted
in segmentation subnet produced by the uncertainty of the
domain discriminator, which can be seen as the attention-like
module that identifies the local domain gap in feature space
unsupervisedly. This module could capture the discriminative
features and emphasize these local alignment, ensuring the
local-level semantic consistency for final prediction.

To sum up, the framework is capable of paying more atten-
tion to local regions with larger variance in segmentation target
instead of coarse global alignment. Our main contributions are
highlighted as follows:

1) We propose a novel strategy, Global-Local Union Align-
ment, which combines global alignment and local align-
ment while considering the characteristics of medical images,
thereby promoting the overall transferability in cross-modality
tasks with severe domain gap and local gap imbalance.

2) The results in two bidirectional cross-modality segmenta-
tion tasks between MRI and CT: cardiac substructure segmen-
tation [8] and abdominal multi-organ segmentation [13], [14]
demonstrate that our method achieves superior performance to
state-of-the-art UDA methods generally.

II. RELATED WORK

1) Domain Adaptation in Medical Image Analysis: There has
been a rapid development of deep learning models for medical
image analysis [15]–[18]. Nonetheless, the effectiveness of
deep learning model in the clinical application has been
greatly hindered due to the requirement of a large amount of
labeled data and the population of multi-modality datasets.
To solve these problems, several Unsupervised Domain
Adaptation (UDA) methods have been proposed and achieved
great performance for medical datasets [5], [6], [19]. By
leveraging the shared features between the source and
target domains, UDA effectively transfers knowledge from
the former to the latter, thereby alleviating the need for
extensive labeling efforts. This approach not only enhances
the model’s performance but also reduces the overall cost
and time required for data acquisition and annotation, making
it an attractive option for medical professionals seeking to
streamline their workflows and improve patient outcomes. For
example, Wollmann et al. [20] proposed a CycleGAN-based
domain adaptation method for breast cancer classification.
Similarly, this mode was also leveraged by Manakov et
al. [21] to tackle the retinal Optical Coherence Tomography
(OCT) image denoising problem. Mahmood et al. [22]
proposed a reverse unsupervised domain adaptation method
to generate a synthetic-like representation of real endoscopy
images for the notoriously difficult task of depth-estimation
from endoscopy. Recently, Chen et al. [23] presented a novel
UDA network for semantic segmentation which synergistically
combines feature alignment and image alignment into one
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Fig. 2. Illustration of our proposed method vs. global alignment

unified framework to improve the adaptation performance.
Some of the latest work [24], [25] even exploited networks
pretrained on large-scale datasets which could leverage
pretext knowledge to further boost performance on medical
UDA tasks.

2) Global Alignment vs. Local Alignment: The existing UDA
methods can mainly be devided in three categories, adversarial
training [26], [27], distance minimization [28], [29] and self-
training [30], [31]. These classical methods align the global
source and target domain distribution without considering the
class/local-level distribution shift imbalance, which, however,
leads some discriminable class-wise/local information to be
confused. Recently, researchers are increasingly investigating
local-level alignment [32], [33], which performs local align-
ment of the source and target domains in the feature space
leveraging the uncertainty of the model. These alignment
methods have gained considerable performance improvement
compared with the conventional ones in common datasets due
to capturing the fine-grained domain information. Besides, the
combination of global and local alignment are undoubtedly
arising research attention. Except for [9], [10] stated above
which consider global and local alignment at multi-level
feature space with various size of respective fields, [34] pro-
posed contextual-relationships consistent domain adaptation
via multi-scale entropy max-minimizing; and [35] adopted
robust local preserving and global aligning network under the
setting of noisy labels. Our framework is similar to [9], [10]
in that the local alignment module is introduced to reflect
the discriminability and calibrate the transferability of fea-
ture representations. However, the proposed method is much
different from them both in global alignment strategy and
the interaction method between global and local alignment.
[9], [10] made local alignment with a small receptive field
in feature space and global features (image-size) on deeper
layers of the model, with both alignments unified in one
stage. The global alignment in our work is operated on the
whole distribution at domain level, which can be taken as a
preprocessing step ahead of the local alignment.

III. MAIN METHOD

A. Method Overview

In this work, we focus on the UDA problem for medical
image semantic segmentation, where the labeled source dataset
{xs, ys} and unlabeled target set {xt} are available.

The overall framework is shown in Figure 3, which is
composed of a synthesis subnet and a segmentation subnet,
each designed to address a specific challenge of cross-domain
medical image segmentation. The first stage of the framework
involves the synthesis subnet, which preprocesses the data to
achieve global domain-level alignment, mitigating the domain
shift in both the background and target. Specifically, the
network first disentangles the features of two domains into
a shared content space and individual style representations.
By swapping the individual style representation to exchange
the style of the original image, the style-transferred images
are generated with the anatomical structure maintained. This
global alignment allows the downstream segmentation subnet
to focus on local discriminative features with a larger domain
gap in the segmentation target. In the second stage, the
segmentation subnet employs a local alignment module that
leverages the feature masks generated by the uncertainty of
the domain discriminator. The attention mechanism allows
the network to identify and emphasize the discriminative
local features, promoting local-level transferability to further
improve the adaptation. To be precise, the style-transferred
source domain image xs→t and the original target domain
image xt are fed into the segmentation subnet. With a local
feature mask computed by a pixel-wise domain discriminator,
the target domain feature is reweighted and calibrated. The
convolutional segmentor can attain more accurate prediction
by concentrating on the discriminable features with larger
domain shift, balancing the ‘inter-gap’ between local features.
The following sections provide a detailed description of the
entire process.

1) Global Alignment: Feature-Disentanglement Synthesis
Subnet: Similar to the ideas of predominant image transfor-
mation methods [36], [37], we assume that the latent space of
images can be decomposed into a content space and a style
space. While in our framework, rather than taking a single
domain as diverse styles, we employ a unified domain style
instead. Following this assumption, the image xi ∈ Xi(i =
s, t) can be represented as xi = (ci, di), where ci is the content
representation of image xi and di is the style representation -
domain label. Different from previous efforts that use an extra
encoder to extract the domain-specific features to represent
style, our work employs a Multi-Layer Perceptron (MLP)
to learn the style representation for each domain, which
is represented by the domain label di. Inspired by some
recent work that engages affine transformation parameters in
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Fig. 3. Overview of the whole framework. The feature-disentanglement style-transfer subnet first synthesizes the source-content target-style
images. Combined with real target images, they are used to train the segmentation subnet, where a local feature mask is introduced to calibrate
the discriminative areas. The module C in step A is the ‘content’(domain-invariant features) of an image.

normalization layers to represent styles, we equip both the
decomposition and reconstruction processes with Adaptive
Instance Normalization (AdaIN) [38] layers to introduce the
style representations.

As shown in Figure 3, we exploit a 2D auto-encoder archi-
tecture as the synthesis subnet G, which consists of a shared
encoder GE and decoder GD. First, the content representation
cx of the image x is obtained using encoder GE conditioned on
the domain label di, i.e., ci = GE(xi, di). Then, we compose
the reconstructed image xii based on the content cx and
domain label di, i.e., xii = GD(GE((xi, di)), di). Similarly,
the style-transferred image (from domain i to domain j) can be
integrated as xij = GD(GE((xi, di)), dj), i ̸= j. In addition, a
Markovian discriminator [39] D is introduced as the image
discriminator for both domains, which learns to determine
whether an image xi is a real image of its domain Xi or a fake
one generated by G, i.e., Di(xi) = D(xi|di). More details of
the structure and hyperparameters of the synthesis subnet can
be found in the appendix.

2) Local Alignment: Segmentation Subnet with Dual Discrim-
inators: As shown in Figure 3, local alignment stage is mainly
composed of a segmentation network S and two discriminator
networks D1, D2. For better description, the segmentation
network can be further decomposed into two compositions,
a feature extractor SE and a label predictor SP . We adopt
Deeplab-ResNet50 [40] as the segmentation backbone. Dis-
criminators are two convolutional classifiers working in feature
space and image space respectively. The target-like source-
content images xs→t will be first extracted by SE to form
the feature representation fs→t, i.e., fs→t = SE(xs→t). Then
the feature map fs→t will be taken into the label predictor

SP for semantic segmentation to get the final result ps→t.
Meanwhile, the feature map fs→t and final prediction ps→t

are input into the discriminators as the source samples of
adversarial training, respectively.

For the real target flow, the feature map ft extracted by SE

is first fed into D1. D1 will evaluate the feature distribution
of target data ft and produce a local feature mask m, where
m = |D1(ft)|. The feature mask then reweights the original
feature map ft to form a new feature map f̂t = ft +
ft ⊗ expand(tanh(m)) and feeds it into SP to yield the
final prediction. Here, expand operation replicates the local
feature map with channel 1 to a channel dimension that is
the same as the input feature for the subsequent element-
wise multiplication and tanh is introduced as a normalization
layer to prevent the gradient exploration in the early training
stage. For the second discriminator D2, it evaluates the final
predictions calibrated through the feature mask m, and further
narrows the pixel-level domain gap between source prediction
ps and target prediction pt through adversarial loss.

B. Objective Function
The proposed model is featured in two stages. In stage one,

the training loss consists of reconstruction loss, cycle consis-
tency loss, and adversarial loss. First of all, the reconstruction
loss Lrec is a promise for the synthesis net G to rebuild the
image xi and content ci during cross-domain translation:

Lrec im(GE ,GD) = Exi∼p(Xi)[∥GD(GE(xi, di), di)− xi∥1] ,

Lrec c(GE ,GD) = Eci [∥GE(GD(ci, dj), dj)− ci∥1] .
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Meanwhile, a cycle-consistency loss is adopted to guarantee
that the mapping between the original image and the generated
image is a unique cross-domain. Namely, for a given image
xi, it should return to itself when translated Xi → Xj → Xi.
The cycle-consistency loss is described as:

Lcyc(GE ,GD) =

Exi∼p(Xi)[∥GD(GE(GD((GE(xi, di), di), dj), di)− xi∥1] .

Moreover, we would like to make sure that the data xij

generated by G is as close to the real data distribution as
possible, an adversarial loss is included in GAN training with
the domain discriminator D:

Ladv(G, D) =Exj∼p(Xj)[logD((xj |dj)]+
Exi∼p(Xi)[1− logD(GD(GE(xi, di), dj)|dj)] .

Finally, we jointly train the encoder, decoder, and domain
discriminator, which is shown as:

min
GE ,GD

max
D

λrec imLrec im + λrec cLrec c

+ λcycLcyc + λadvLadv.

In stage two, the training loss is composed of the segmenta-
tion loss and adversarial loss. Segmentation loss Lseg is for
segmentor S(SE ,SP ) to output more accurate prediction in a
supervised way:

Lseg(SE ,SP ) =Exi,yi∼p(XS ,YS)(ℓce(S(xi), yi)

+ ℓdice(S(xi), yi)) .

ℓce and ℓdice term represent the multi-class cross-entropy loss
and the Dice loss.

The adversarial loss can be decomposed into two parts,
LD1

adv(SE , D1) and LD2

adv(SE ,SP , D2), indicating the adver-
sarial learning losses of the two discriminators, respectively.
The process is summarized as below:

LD1

adv(SE , D1) =Exs→t∼p(XS→T )[logD1(SE(xs→t)]

+ Ext∼p(XT )[1− logD1(SE(xt))] .

LD2

adv(S, D2) =Exs→t∼p(XS→T )[logD2(S(xs→t)]

+ Ext∼p(XT )[1− logD2(S(xt))] .

The overall training objective function of the segmentation
subnet is:

min
SE ,SP

max
D1,D2

Lseg(SE ,SP ) + λd1L
D1

adv(SE , D1)

+ λd2
LD2

adv(SE ,SP , D2) .

λrec im,λcyc,λrec c,λadv,λd1
,λd2

are introduced to balance the
relative importance of different terms.

IV. EXPERIMENTS

A. Setup
1) Implementation Details: Our model is implemented using

PyTorch toolbox on a Quadro RTX 8000 (48GB memory). In
style-transfer stage, ADAM solver [47] is adopted with a batch
size of 8. Learning rate is set to 0.0002, and weight decay is
0.0001. In the segmentation stage, we choose SGD algorithm
as the optimizer for segmentator S with momentum of 0.9
and weight decay of 0.0005, while for the dual discriminators

we use ADAM optimizer with β1 = 0.9 and β2 = 0.99. The
weight decay method is polynomial decay with a power of
0.9. All the networks are trained from scratch. We tune the
batch size and learning rate empirically in each task. For the
hyper-parameters, λrec im = λcyc = 20, λrec c = λadv = 1,
λd1

= λd2
= 0.01. We train the style-transfer model for 50k

iterations. After that, the pre-processed training set is fed into
the segmentation network. The validation set is used to find
the model with the best performance.

2) Datasets: Two challenging adaptation tasks, e.g., Car-
diac substructure segmentation and Abdominal multi-organ
segmentation, are performed in the experiment. 1) Cardiac
substructure segmentation utilizes the Multi-Modality Whole
Heart Segmentation (MMWHS) Challenge 2017 dataset [8],
which is composed of 20 labeled MRI volumes and 20 labeled
CT volumes. The goal is to parse four heart structures: the
Ascending Aorta (AA), the Left Atrium Cavity (LAC), the Left
Ventricle blood Cavity (LVC) and the MYOcardium (MYO)
of the left ventricle. The minority classes are the MYO and
AA, compared with the LAC and LVC. 2) Abdominal multi-
organ segmentation is implemented with 30 volumes CT data
from [14] and 20 volumes of T2-SPIR MRI data from ISBI
CHAOS Challenge 2019 [13] with both groundtruth masks
provided. We aim to segment the four key organs, including
liver, right kidney, left kidney and spleen. Except for the liver,
the remaining three classes take up a small proportion of the
overall region.

The pre-processing includes normalization, random
crop, rotation and other augmentation operations. The size
for each slice is 256 × 256 in the cardiac dataset and
512 × 512 in the abdominal dataset. For cardiac dataset,
we used the pre-processed version from [23]. It is worth
noting that two domains of pictures in both tasks are unpaired.

3) Evaluation Indicators: Two metrics commonly used in
medical image segmentation are adopted: Dice similarity
coefficient (Dice) and the Average Surface Distance (ASD).
Dice score measures the voxel-level intersection part between
the prediction mask and the ground truth mask, while the
ASD coefficient represents the average distances between the
surfaces of the two in 3D.

B. Experimental Results

We evaluate quantitatively and qualitatively our method
against other SOTAs including CycleGAN [3], CyCADA [41],
SynSeg-Net [5], SIFA [23], DSFN [42], UESM [45],
DSAN [25], CUDA [46], DDA-GAN [43] and UMDA [44].
Among them, the earlier methods CycleGAN and SynSeg-
Net conduct adversarial alignment at the pixel level, while the
remaining methods exploit both image and feature alignment.

Table I, Table II and Figure 4, Figure 5 respectively show
the comparison results in cardiac segmentation and abdominal
multi-organ segmentation. Part of the lines are absent due to
the lack of public codes. We conduct CycleGAN, SynSeg-Net
and CyCADA on our datasets to obtain the final numbers. Per-
formance of the remaining methods come from their papers. It
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Test images No 
adaptation

SynSeg-Net CycleGAN CyCADA SIFA Ours Supervised Ground Truth

Fig. 4. Qualitative comparison result of cardiac segmentation. The first row are CT images and the following row are MR images. The cardiac
substructure, AA, LAC, LVC, MYO are marked in yellow, purple, green and blue, respectively.

Test images No 
adaptation

SynSeg-Net CycleGAN CyCADA SIFA Ours Supervised Ground Truth

Fig. 5. Qualitative comparison results of abdominal segmentation. The first row are MR images, and the following one are CT images. The organs,
Liver, Right kidney, Left kidney and Spleen, are marked in blue, purple, green and yellow, respectively.

TABLE I
PERFORMANCE COMPARISON OF DIFFERENT METHODS FOR CROSS-MODALITY CARDIAC SEGMENTATION

Cardiac MRI - CT Cardiac CT - MRI

Method
Dice(%) ↑ ASD(voxel) ↓ Dice(%) ↑ ASD(voxel) ↓

AA LAC LVC MYO Avg AA LAC LVC MYO Avg AA LAC LVC MYO Avg AA LAC LVC MYO Avg
Supervised training 88.49 87.71 90.69 83.33 87.55 3.64 3.19 2.03 2.14 2.75 83.61 84.16 90.74 76.40 83.73 1.98 1.73 1.58 1.64 1.73

No adaptation 30.75 26.25 10.10 1.36 17.12 26.92 18.45 16.75 28.78 22.73 12.79 11.52 10.21 8.61 10.78 11.74 11.21 14.10 11.23 12.07
CycleGAN [3] 72.58 71.88 50.45 31.52 56.61 12.50 14.76 9.08 8.48 11.21 61.90 40.97 60.27 41.59 51.18 5.83 8.43 7.84 5.12 6.81
SynSeg-Net [5] 66.99 62.11 47.20 38.00 53.58 12.85 8.19 7.31 10.22 9.64 58.50 39.09 62.49 31.10 47.80 9.55 10.03 7.81 5.04 8.10
CyCADA [41] 68.18 64.23 48.90 44.89 56.55 9.69 10.36 9.41 11.77 10.34 59.65 42.77 62.21 36.90 50.38 8.40 12.19 6.09 6.26 8.23

SIFA [19] 81.30 79.50 73.80 61.60 74.10 7.90 6.20 5.50 8.50 7.00 65.30 62.30 78.90 47.30 63.40 7.30 7.40 3.80 4.40 5.70
DSFN [42] 84.70 76.90 79.10 62.40 75.80 - - - - - - - - - - - - - - -

DDA-GAN [43] 68.30 75.70 78.50 77.80 75.10 6.50 4.80 5.40 5.20 5.50 - - - - - - - - - -
UMDA [44] 89.20 82.70 82.60 66.20 80.20 6.70 3.60 4.50 3.00 4.00 - - - - - - - - - -
UESM [45] 84.15 88.30 84.32 71.42 82.05 3.87 3.49 3.81 3.70 3.71 - - - - - - - - - -
DSAN [25] 79.92 84.76 82.77 66.52 78.50 7.68 6.65 3.77 5.59 5.92 71.29 66.23 76.20 52.07 66.45 4.44 7.30 5.46 4.25 5.36
CUDA [46] 87.20 88.50 83.00 72.80 82.90 7.03 2.80 5.20 6.80 5.50 68.50 66.10 79.10 42.80 65.50 5.10 4.10 3.20 4.10 4.10
Ours (Avg) 87.18 85.47 87.03 70.28 82.49 4.65 3.59 3.50 3.09 3.71 70.01 69.02 85.30 54.05 69.60 5.14 3.16 2.55 3.45 3.58

Standard deviation 0.74 1.52 1.53 1.50 - 0.09 0.23 0.17 0.19 - 0.80 1.19 0.47 0.71 - 0.47 0.50 0.20 0.04 -

TABLE II
PERFORMANCE COMPARISON OF DIFFERENT METHODS FOR CROSS-MODALITY ABDOMINAL SEGMENTATION

Abdominal MRI - CT Abdominal CT - MRI

Method
Dice(%) ↑ ASD(voxel) ↓ Dice(%) ↑ ASD(voxel) ↓

Liver R.kid L.Kid Spleen Avg Liver R.kid L.Kid Spleen Avg Liver R.kid L.Kid Spleen Avg Liver R.kid L.Kid Spleen Avg
Supervised training 95.08 91.06 93.62 89.37 92.28 0.66 1.18 0.73 1.11 0.92 93.21 93.42 93.22 89.59 92.36 0.70 0.48 0.55 1.12 0.71

No adaptation 78.65 54.52 47.84 55.48 59.12 3.86 8.72 3.19 4.88 5.16 58.30 61.08 59.85 73.95 63.30 3.93 1.82 2.58 2.42 2.69
SynSeg-Net [5] 82.15 79.36 68.06 80.44 77.50 2.67 1.98 2.09 2.65 2.34 84.30 88.61 71.92 74.39 79.81 2.94 1.86 2.33 2.51 2.41
CyCADA [41] 81.08 75.95 73.69 76.13 76.71 2.24 1.96 1.94 1.74 1.97 85.72 88.56 75.51 78.46 82.06 2.74 2.16 1.91 2.29 2.28

SIFA [19] 88.00 83.30 80.90 82.60 83.70 1.20 1.00 1.50 1.60 1.30 90.00 89.10 80.20 82.30 85.40 1.50 0.60 1.50 2.40 1.50
CycleGAN [3] 82.47 76.94 78.28 78.89 79.15 1.68 1.35 1.90 1.94 1.71 87.33 88.39 74.28 80.91 82.72 2.05 2.59 1.84 2.87 2.34

DSAN [25] - - - - - - - - - - 89.30 90.16 90.09 89.84 89.84 - - - - -
Ours (Avg) 93.76 85.44 87.62 93.85 90.17 1.47 3.21 1.81 1.65 2.04 90.01 92.19 90.17 93.47 91.46 1.20 0.38 0.35 0.33 0.57

Standard deviation 0.88 0.20 0.90 0.63 - 0.23 0.36 0.22 0.14 - 0.49 0.88 0.75 0.63 - 0.07 0.05 0.10 0.04 -

is also noted that all the reported results use the unpretrained
backbones for fair comparison. We also provide the results
without adaptation and supervised training for comparison,

where only a segmentation backbone is adopted. These two
results can be approximately regarded as the lower and upper
bounds for UDA.
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Fig. 6. Visualization of the relation between local feature masks and transferability in different methods.

TABLE III
ABLATION STUDY OF KEY COMPONENTS IN CARDIAC MRI - CT.

StarGAN-v2 - - - - - ✓ - -
CycleGAN - - - - - - ✓ -
Style-Transfer - ✓ ✓ ✓ - - - ✓
D1 - - ✓ - ✓ ✓ ✓ ✓
D2 - - - ✓ ✓ ✓ ✓ ✓
Dice(%) 17.12 58.35 78.51 60.52 68.76 70.70 81.17 82.49

From these results, it can be seen that 1) There is a dras-
tic performance drop between no adaptation and supervised
training, indicating that a large domain gap exists between two
domains in both tasks. 2) Our proposed method outperforms
current state-of-the-art methods generally. Compared with
CyCADA [41], which takes a similar two-stage setting but
conducts global alignment only, our method improves the
Dice score from 56.55% to 82.49% in Cardiac MRI→CT
segmentation. Although our method (82.49%) is slightly in-
ferior to CUDA (82.90%) in task Caridac MRI-CT, it exceeds
CUDA by a large margin in the inversed direction (Ours
69.60% vs. CUDA 65.50%). The main reason may be the
superiority of their segmentation backbone, which accounts
for the major contributions of their work. Moreover, the results
on the abdominal dataset further corroborate the effectiveness
of our method. Although our method generally outperforms
other approaches, it is worth noting that the ASD result for
the directional MRI-CT alignment on the abdominal multi-
organ dataset is comparatively poor. This discrepancy may
be attributed to the use of different annotation criteria for
MRI and CT images. For instance, the annotation of the
kidney is hollow in MRI but filled in CT as shown in the
last columns in Figure 11,12. 3) Our method appears to
perform better in classes with larger domain gaps. Regions
with lower transferability are more likely to appear in classes
with larger domain gap, which was empirically derived from
our observations of the local feature masks. As in MYO of
Cardiac MRI→CT and LVC of CT→MR, our method exhibits
more improvements than other classes in the same task.

C. Analysis

1) Effectiveness of Key Components: To verify the influence
of each module in our network, we conduct ablation tests on
cardiac MRI→CT segmentation task, as reported in Table III.
With the style-transfer pre-processing, the Dice score raises

41.23% compared with no adaptation. The dual discriminators
of local alignment module bring an improvement from 17.12%
to 68.76% in Dice. Moreover, D1 improves 20.16% and D2

improves 2.17% when individually adopted with the style-
transfer module. If two modules are combined, the final
outcome can achieve an astonishing result of 82.49%.

Besides demonstrating the effectiveness of each module and
their mixtures by numerical values, we provide the visualiza-
tion of the local feature mask, serving as the indicator for
local feature domain gap in Figure 6. We can infer that 1)
the style-transfer step can significantly reduce the domain
gap globally, especially in the background. By comparing
the feature mask of the second and third columns, in the
absence of global alignment, the discriminator tends to output
high uncertainty in the background and considers it as part
of discriminative region, thus the vital segmentation target
obtains relative low scores. In this situation, the local align-
ment module is meaningless as aligning the background area
will not contribute to final prediction. However, when the
style-transfer step is adopted, the third column indicates the
downstream modules can better capture discriminative features
in segmentation target. 2) the discriminator D1 could provide
accurate feedback on the region with larger domain gap,
and by adaptively re-weighting the feature map, prediction
performance is improved accordingly. When comparing the
feature mask with the SOTA results, we observe a peak in
the feature mask regions that corresponds to the areas where
SOTAs do not predict accurately. This shows our module is
able to locate the real discriminative regions precisely. Then,
if we add our prediction in comparison, our method performs
apparently better in these areas, indicating the effectiveness of
our local alignment module.

2) Choice of Style Transfer: We provide visualization ex-
amples in Figure 7 to compare our style-transfer methods
with other SOTA style-transfer methods [3], [37], [48], [49].
The aim of style-transfer pre-processing is to reduce the
domain gap from a stylistic perspective globally, weakening
the influence of different backgrounds on the subsequent
local alignment. The downstream discriminator would better
focus on the segmentation target. Therefore, we design the
network according to the following criteria: 1) the synthesized
image should be indistinguishable in style from the target
domain, and 2) the semantic content of domain should be
well preserved. Although it is hard to define the explicit
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Test Images Drit++ MUNIT StarGAN-v2 CycleGAN Ours GT

Fig. 7. Comparison of style-transfer. The first two rows are MRI→ CT
examples. The last two rows are CT → MR examples

content/style in different domains due to the deformation of
structure appearance in our datasets, we assume source domain
and target domain share the same content but different styles.
The domain-invariant feature is taken as content that reveals
the target’s spatial structure, and the rendering of the structure
is regarded as the style.

Visualization of different style transfer methods shows that
1) Compared with CycleGAN [3], our style-transfer method
utilizing a feature-disentangling strategy can better preserve
the semantic information, revealing the effectiveness of the
disentanglement; 2) Methods working well on natural image
data fail to obtain satisfactory results. We believe that the
methods with too strong style-transfer ability are not appli-
cable to medical image datasets, partially due to the difficulty
distinguishing the style and content in medical images. For
MUNIT [37], Drit++ [48] and StarGAN-v2 [49], structure
deformation is quite likely as they use a sample-level training
strategy. The large intra-domain variance adds the risk of
negative transfer in this setting. Instead, utilizing an average
style for an entire domain seems relatively safe in our scenario.

Based on the qualitative results obtained, we further
examine quantitatively two style transfers, e.g. StarGAN-
v2 [49] and CycleGAN [3] on how they affect subsequent
segmentation. The results are reported in Table III. As
observed, our method still achieves the best performance.

3) Limitation: Strictly from the perspective of feature dis-
entangling, the shape variance of the same structure in cross-
modality datasets should be taken as part of domain-specific
features. Our strategy is to utilize the average style of a domain
to attain relatively stable results. This method is valid in
our experiment, as the same substructure even shows diverse
shapes in the same domain in our tasks. We suspect the
network could notice this variation when picking the average
style. However, supposing that a single class has a fixed shape
in one domain and shows different morphology in another, this
method is no longer appropriate. This is because it is likely to
regard its shape change as style difference between domains.
It consequently produces deformed images and impacts the
subsequent segmentation negatively.

V. CONCLUSION

In this paper, we propose a novel strategy to better solve
the domain adaptation problems in medical image datasets.
By jointly aligning the domains globally and locally, the
model can not only reduce the global domain shift, but also
alleviate the inter-gap problem for local features. The local
alignment could calibrate the local transferability, especially
in crucial areas in segmentation target, thus promoting the
overall performance. We validate the proposed framework with
two challenging tasks, cardiac and abdominal segmentation,
and the experimental results achieve comparable even superior
performance to the state-of-the-art domain adaptation methods.

APPENDIX

A. Additional Results

We present more qualitative result for our experiments
with cardiac dataset and abdominal dataset. In Figure 9 and
Figure 10, we show additional result in cardiac substructure
segmentation. Similarly, in Figure 11 and Figure 12, we
provide more result in abdominal multi-organ segmentation
compared with other methods [3], [5], [23], [41].

B. Style-transfer Network Architecture

The architecture of style-transfer network is shown in Fig-
ure 8. Details for style-transfer module are as follows: h and
w: height and width of the input images, ns: dimension of
the AdaIN parameters, N : the number of output channels,
K: kernel size, S: stride size, P : padding size, FC: fully
connected layer, IN: instance normalization, AdaIN: adaptive
instance normalization, ReLU: rectified linear unit, LReLU:
Leaky ReLU with a negative slope of 0.2.

C. Adaptive Instance Normalization (AdaIN)

Instance Normalization is defined as the following:

IN(x) = γ(
x− µ(x)

σ(x)
) + β (1)

where γ and β are learnable parameters, and µ(x) and σ(x)
are the channel-wise mean and variance which defined as:

µnc(x) =
1

HW

H∑
h=1

W∑
w=1

xnchw, σnc(x)

=

√√√√ 1

HW

H∑
h=1

W∑
w=1

(xnchw − µnc(x))

(2)

According to previous works [37], [38], AdaIN receives a
content input x and a style representation y, which contains
yµ and yσ . Unlike Instance Normalization (IN), AdaIN has
no learnable affine parameters. Instead, it uses the input style
representations as affine parameters adaptively:

AdaIN(x, yµ, yσ) = yµ(
x− µ(x)

σ(x)
) + yσ. (3)
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Fig. 8. Architecture of the style-transfer network.

TABLE IV
ARCHITECTURE OF THE UNIFIED CONTENT ENCODER GE .

Part Input → Output Shape Layer Information

Down-sampling
(h,w,1)+(64+64) → (h,w,64) CONV-(N64, K7x7, S1, P3), AdaIN, ReLU

(h,w,64)+(128+128) → (h2 ,w2 ,128) CONV-(N128, K3x3, S2, P1), AdaIN, ReLU
(h2 ,w2 ,128)+(256+256) → (h4 ,w4 ,256) CONV-(N256, K3x3, S2, P1), AdaIN, ReLU

Bottleneck

(h4 ,w4 ,256)+(256+256) → (h4 ,w4 ,256) ResBlock: CONV-(N256, K3x3, S1, P1), AdaIN, ReLU
(h4 ,w4 ,256)+(256+256) → (h4 ,w4 ,256) ResBlock: CONV-(N256, K3x3, S1, P1), AdaIN, ReLU
(h4 ,w4 ,256)+(256+256) → (h4 ,w4 ,256) ResBlock: CONV-(N256, K3x3, S1, P1), AdaIN, ReLU
(h4 ,w4 ,256)+(256+256) → (h4 ,w4 ,256) ResBlock: CONV-(N256, K3x3, S1, P1), AdaIN, ReLU

TABLE V
ARCHITECTURE OF MLP FOR ENCODER GE AND DECODER GD .

Part Input → Output Shape Layer Information

MLP
(2) → (256) FC(2, 256), ReLU

(256) → (256) FC(256, 256), ReLU
(256) → (ns) FC(256, ns)

TABLE VI
ARCHITECTURE OF THE UNIFIED DECODER GD .

Part Input → Output Shape Layer Information

Bottleneck

(h4 ,w4 ,256)+(256+256) → (h4 ,w4 ,256) ResBlock: CONV-(N256, K3x3, S1, P1), AdaIN, ReLU
(h4 ,w4 ,256)+(256+256) → (h4 ,w4 ,256) ResBlock: CONV-(N256, K3x3, S1, P1), AdaIN, ReLU
(h4 ,w4 ,256)+(256+256) → (h4 ,w4 ,256) ResBlock: CONV-(N256, K3x3, S1, P1), AdaIN, ReLU
(h4 ,w4 ,256)+(256+256) → (h4 ,w4 ,256) ResBlock: CONV-(N256, K3x3, S1, P1), AdaIN, ReLU

Up-sampling
(h4 ,w4 ,256)+(128+128) → (h2 ,w2 ,128) DECONV-(N128, K3x3, S2, P1), AdaIN, ReLU

(h2 ,w2 ,128)+(64+64) → (h,w,64) DECONV-(N64, K3x3, S2, P1), AdaIN, ReLU
(h,w,64)→(h,w,1) CONV-(N1,K7x7,S1,P3), ReLU, Tanh

TABLE VII
ARCHITECTURE OF DOMAIN DISCRIMINATOR D.

Part Input → Output Shape Layer Information

Shared body

(h,w,1) → (h2 ,w2 ,64) CONV-(N64, K4x4, S2, P1), LReLU
(h2 ,w2 ,64) → (h4 ,w4 ,128) CONV-(N128, K4x4, S2, P1), IN, LReLU

(h4 ,w4 ,128) → (h8 ,w8 ,256) CONV-(N256, K4x4, S2, P1), IN, LReLU
(h8 ,w8 ,256) → (h8 ,w8 ,512) CONV-(N512, K4x4, S1, P1), IN, LReLU

Output Branch D1 (h8 ,w8 ,512) → (h8 ,w8 ,1) CONV-(N1, K4x4, S1, P1)
Output Branch D2 (h8 ,w8 ,512) → (h8 ,w8 ,1) CONV-(N1, K4x4, S1, P1)
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Test images No Adaptation SynSeg-Net CycleGAN CyCADA SIFA Ours Supervised Ground Truth

Fig. 9. Qualitative comparison result of cardiac MRI→ CT segmentation.

Test images No adaptation SynSeg-Net CycleGAN CyCADA SIFA Ours Supervised Ground Truth

Fig. 10. Qualitative comparison result of cardiac CT→ MRI segmentation.

Test images No adaptation SynSeg-Net CycleGAN CyCADA SIFA Ours Supervised Ground Truth

Fig. 11. Qualitative comparison result of abdominal MRI→ CT segmentation.
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Test images No adaptation SynSeg-Net CycleGAN CyCADA SIFA Ours Supervised Ground Truth

Fig. 12. Qualitative comparison result of abdominal CT→ MRI segmentation.
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